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Ovh)~l = 0, S= 1, . . ., m 

where $., is the basis of the rigid displacement vectors (m = 6 in the case of an unfixed 
boundary). 

N o t e 3. 3. For each specific problem of the linear viscoelasticity problems posed, 
the domain of variation of the parameter /3 is bounded. For partial principle Y to be 
satisfied simultaneously for all such specific problems, it is necessary to require that all 
roots of the appropriate polynomials P, @, a, p) lie in the left half-plane of the com- 
plex variable p for all 01 E LO, awl, fi E R+. 

The author is grateful to I. I. Vorovich for formulating the problem. 
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The stress distribution in a circular isotropic ring with a crack on part of the 
concentric circle is investigated. A system of functional equations goveming 
the coefficients of the complex Fourier series expansion of the stresses acting 
on the circle on which the crack is located is obtained. The solution of the 
mentioned system of equations is obtained by using a factorization method, 
which permitted reduction of the initial system of equations to two coupled 
infinite systems of algebraic equations. The possibility of using the method 
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of truncation to solve these systems is proved. The singularity originating in 
the neighborhood of ends of the crack in the formulas governing the stresses is 
isolated. Stress intensity coefficients for the effect of a uniform load on the 
external contour are presented. 

1. Let us examine a flat circular ring (a( r< b, 1 0 I< n) with a crack (r = 
c, 1 8 I< 0,) loaded by normal and shear stresses on the outer and inner contours 

0, (6,9) = 5 pn+eine, 6,. (a, 0) = 5 pnweino (1.1) 
n=-m 7X=--m 

Tre(b, 0) = 5 qn+eine, T,.@ (u, e) = 5 qnmeine 
T&=-CC. ?a=--co 

in a polar coordinate system. 
Not all the coefficients in these expansions are independent since there follows from 

the equilibrium condition for the load on each contour: 

Qo* = 0, Q1* = -ipI+, q-lf = ipI* 

The determination of stresses in a ring is related to seeking the Airy function satisfying 
a biharmonic equation. This function can be represented as 

F (r, e) = B,,r2 + Co In r + Do + (Alr3 + C,r + D,r-‘) eie -I- (1.2) 
(A_lr3 + C_,r + D_lr-l) e-ie 4 

2 (A,,r* + B,p + C/+2 + Dnr-n+2) eine 
I 73 I>2 

where (B,, Co . . .) An, . . ., D, are constants. The normal and shear stresses on the 
outer and inner contours must hence be equal to those given by (1.1) and zero on the 
crack. 

Let us image the ring slit along the circle r = c and consider two rings: an outer 
(c<r<b, lelc ) d rc an aninner (a<r<c, If3 I< n).Werepresentthe 
unknown stresses acting on the circle r = c as 

0, (c, e) = 5 fneine, z,~(c, e) = i q+pe (1.3) 
n=-00 ?l=-CO 

(cpo = 0, ‘pl = - ifi, W1 = V-J 

The Airy function for each of the two rings can be taken in the form (1.2) and the in& 
gration constants can be determined from the appropriate boundary conditions, These 
constants will be expressed in terms of the unknown coefficients f, and cp,of the expan- 
sion (1.3). To determine these latter, the conditions connecting the rings under conside- 
ration along their common boundary r = c shcnrld be used, on which the following con- 
ditions must be satisfied: 

u, (c, e) = are (c, e) = 0 (IO I oo) 

U, (c + 0, e) = U, (C - 0, e) 

ue(c+O, e)= m(c--0, e) @>IeI>W 

(1.4) 
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where ur, ue are the displacement vector components. 
The connection conditions (1.4) permit obtaining the system 

i f&in@ = 0, i q,eine = 0 (I 0 I < 00) 
?I=--00 ?J==-CO 

Here 
a, = - 2c (1 - %I , p0=~0=60=p*,,=6*,=0 

%= - c(l- 2v,)(,_&ele4) 9 7*1= 3~@-2%+$4~~,~4_e4, 

b =e 
D,,+ (s, e) = 9” + ran + 2 (n’- 1) - na (9 + s-a), D,,- (s, e) = 

D,+ (e, s) 9 

a, = 4n (s-%* - e+P) + 4n(na - 1) (s-~ - P + e* - e-2n) + 

2na$[(n - l)e+ - (n + l)epnl + 2nara[(n + l)e-%” - 

b-- l)eanl + 2nae-2[(n - 1)P - (n + 1)~*I + 2naea[(n + 

1)P - (n - l)s-a”l + 4na (na - l)(s-” - s2 + ea - e-*) + 

4d (sVa- raea) 

b, = c, = 4(s2ne-2n - ranean) -I- 4ns (ear2 - e-at?) f 2na$ X 
[(n + l)ea* + (n - l)e-anl - 2 naea[(n - l)sman + (n + 1)Pl + 

4 (n” - l)[(n - l)~-~” + (n + 1)Pl - 4(na - l)[(n + l)e2” + 

(n- l)e-anl + 2nr2[(n + 2) (n - 1) ezn + (n - 2) (n + 1) e-an] + 
8n (n” - l)(e-a - sw2) - 2neY(n- 2)(n + l)~-~~ + 
(n + 2)(n - 1)Pl 

d, = 4n (s-anean - .i?kan) + 4na (na - 2)(eara - c2sa) + 
2nasY(n - l)e-“” - (n + l)ea”l + 2naea[(n + 1)s” - (n - 
l)s-a*1 - 2ra[(3na + ns - 4)ean + (3na - ns - 4)e-2”l + 
4na (~9 - l)(s2 - ea) + 2e-a[(3n2 - nS - 4)ra” + (3na + 
~23 - 4)PI + 4 (na - l)(na - 4)(e-a - sda) - 4(na - 1) [(n + 

2)P - (n - 2)s-7 + 4 (n2 - l)[(n + 2)e2” - (n - 2)e-a”] 

(1.5) 

(1.6) 

(L-0 

- 6, = U,P,+ + Vnqn+ + GA- + fJ,,qn- 
- v, = K,p,+ -I- -Lq,+ -I- Mnp, -I- N,,qn- 

(1.8) 
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&:1 ==c(3-2q)& M,,=c(3- 2vo) & 

VO==:Eio=Ko=~O=Mo=No=~*~=~*l=L**= 

N*1 = 01 

1 n f > 2, u, = npn+ I(rz + i>s” -+ (n - 1)s’” - (n + l)s-“-a - 

(n - IfsY 

V, = ip,+ [(n + l)(n - 2)s” - (n -f- 2) (n - l)sen -j- 72 (II + 1)X 
s-n-a _ n (n - I)Pq 

Gn = wn- f@ - 4)s” + (n + qrn - (n - l)e-nfa - (n + 4)x 
$%a I 

H, = ip,- [n (n - l)en - la (n + l)e-” - (n + l)(n - 2)C+2 + 

b - i)(Fz -f- 2)e-f1q 

K, = pn+ln (n - 1)~~ - n (n + l)s* - (n _t f)(n - 2)~-“-~ + 

in - 1) (n + 2)sY 

L, = ip,fj(n - 2)(n + 1)S-n-a + (n + 2)(n - l)s”-2 - (n -I- 
2) (n - l)s-” - (n -Z)(n + l)Pl 

M, = p,-[(n + 1) (n - 2) lrn - (n - 1) (n + 2)P - n (n - 
l)e+“+ + n (12 + i)JP+q 

A& = ip,-[(n - 2)(n + 4)fP+~ + (n + 2)(n - 1)6-“+2 - (n + 
2)(n - l)sP- (n - 2)(n + l)e-“3 

(VO = v / (1 + v) for the plane stress, v. = v for plane strain, v is the Poirrson 
ratio, and PO, qQ are constants governing the ring displacement as a solid body], 

Let us require the satisfaction of estimate 

Qt, --Go = 0 (F-‘/r), r-0 P* 9) 

at the ends of the crack Then, in a standard manner, it is easy to show that the problem 
has a unique solution. The series coefficients for the stresses have 

fm9 % = 0 (1 n I-“~), 1 n 1 4 00 (1.10) 

Consequently, the series (L 3) converge no~fo~~y* Because of this nature of the 
convergence, subsequent transformations are formal in nature. However, the s&es govem- 
ing the stresses on the circle. r = C are converted in that form for which the singularity 
( 1.Q) is extracted explicitly* and the remainder is represented by uniformly convergent se- 
ries. After this, compliance with all the boundary conditious can be verified rigorously. 
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The first matrix in the right side in (2.1) determines the coefficients a, , . . ., 6, in 

the case of an infinite domain (this is the principal part of the matrix), and the elements 
of the second matrix tend exponentially to zero as 1 n 1 --f cc. 

We substitute the matrix (1.7). written as the sum (2. l), into the functional equation 
(L 6) and we transfer terms containing elements of the second matrix in this sum to the 
right side. (If the elements of the second matrix are assumed zero and the system (1,,5) 
and (1.6) is solved, then we obtain the solution to the problem for an infinite plate with 
a crack under an arbitrary load in a form different from Cl]). 

We introduce new unknowns by means of the formula 

(2.2) 

Hence, as follows from (1.10) 

f,“, %I0 = 0 (I n I-Y, ~~~--too (2.3) 

Taking amaUnt Of (2. l), (2.2), the functional equations ( 1.5), (1.6) are converted into 

J?J (- 1 n 1 fn’ - sgn rap,“) eine = - lo - flei” - f_le-i@ (2.4) 
Inl>z 

2 (sgn nfnO t- 1 It 1 cp,‘) eine = fleio - f_le-i” (1 0 1 < eo) 
InI>, 

h 2 fneei’te = - aofo - ulfleie - a_J_le-io + 
bl>2 

co 

2 $,einO - 2 (to sin 0 + q. cos 0) 
n=--oo 

(2.5) 

Here 
%a = &a, % = %, I n I < 2 (2.6) 

Let us separate the external load into symmetric and antisymmetric parts in the angle 
8. We examine the case of the effect of the first of the loads mentioned when 

Pnf = P-nf, %a* = --!I-,*, fn = f-n, rp, = --cp,, fnO = j-no* (2.7) 
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The second case for which the signs in the right sides of (2. ‘7) are reversed, is considered 
analogously* 

Taking account of (2.7). the functional equations (2.4), (2.5) are converted into 

z (nf,“+q)pP)CoQ.e = +fa+flcose (2.8) 
n>2 

(2.9) 

The unknown coefficients in (2.8) are not separated, To separate them, we consider the 
functions P (6) and Q (0) 

2 f,,” sin n6 = P (0), 2 cp,“cos n0 = Q (0) (2.10) 
@.a n>a 

Hence 

B 6 
+a 

eosne=~, 2 -nrp,“sinne=~ (2.11) 
nS2 

Substituting (2.10) and (2.11) into (2.8), integrating and taking into account that 

~‘*‘=“~we~nd P(8)= -psin8, Q(~)=~cos~+~/~~+~~cos~ (2.12) 

where p is a constant of integration, Therefore, the system of functional equations (2.8) 
is written as 

(2.13) 

23 fno sin nf3 = --sine (IeI<e0) 

%3a 

We note that (2.13) can be obtained directly from the boundary conditions on the 
crack if they were written as the vector of the forces acting on an arbitrary part of its 
length being equal to zero. 

The system (2.9), (2.13) is similar to the system examined in [23 and admits an exact 
solution by the factorization method when the right side is known. 

8, Let us introduce two analytic functions of the complex variable z 

4. (z) = z* fn°C @+ (d = g tp,“z” (3.1) 

The regularity of these functions in the circle 1 z 1 < 1 and the continuity up to the 
boundary follows from the estimate (2.3). ff we set 

F+ (z-‘) = F_ (4, BD, (z-f) = (D_ (2) (3.2) 
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(the functions F_ (2) and a_ (2) are regular out&de the unit circle and continuous up 
to its boundary), then the functional equations (2.9),(2.13) can be written as 

F+ (~9) - F_ (eie) = -2ip sin 0 (3.3) 

a?, (e9 + @_ (e*9 = 2 (II + fi 1 eos f3 + f. (1 e I < eo) 

hIF,(eie)3-F_(e~)l=90--aofo+2r:~~c0sne- (3.4) 
n&l 

2 (ajI + qd ~0s 8 

h [ID, (eie) - CD_ (e**)] = 2i [ 23 0, sin Al- (r j1 - qo) sin 0-j 
@l 

%<lel<R) 

It follows from (3.3) and (3.4) that the solution of the problem posed reduces to the so- 
lution of Riemann-Hilbert problems of analytic function theory: find functiorrs F+ (2) 
and a+ (z) which are regular within the unit circle, arid functions ti_ (2) and CD_ (2) 
which am regular outside the unit circle by means of the relationship between their 
limit va&s of the boundary, 

For convenience in the subsequent sohrtion, we introduce new unhnown functions 
X* (z] and Y* (z) by means of the following formulas: 

x+ (r) = A@+ (9 + (rj1- rlo) z - 2 6&z” (3.5) 
n>1 

y+ (2) = hF+ (2) + @j1+ qo) z - f (Qo- aofo) -a;xQmp 

-K (4 = -q (z-f), Y_ (2) = -Y,. (z-‘) ’ 

where the functions X, (z) and Y, (z) are regular in the domain 1 z J < 1 and the 
functions X_ (z) and Y_ (z) in 1 z 1 > i) . 

Then (3.3) and (3.4) are converted into the form 

X, PB) + X (f+*) = b If0 + 2 (p + fi) ~0s elf 
2(7jl--rkr)c0f3e-2 ~~60sne 

nX 

(3.6) 

Y+(ecn)+Y_(ef@)= 2i{[ajl+q0-Apfsin6- ~$nsinni3~ 
*>1 

(l@l<W 

X,(e’b)-X_(eie)=O, Y+(e’B)-Y_(eie)=O @30<yej<n) (3.7) 

The functions X* (e) and Y* (z) are hence bounded at the ends of the arc 

U= {lzi= 1, Iargz1<e0) 

As follows from (3.7), the i%nctiuns X, (a) and X_ (z) form a single analytic func- 
tion which is regular in the z-plane with a slit along the arc a. The same is valid for 
Y+ (z) and Y_ (2). Hence their limit values are connected by means of (3.6), which 
are solved in a known manner [3], consequently 

x (2) = +$- S& y& {Vo + LhCr + rJ1 + Ah- qol(z +q- (3.3) 
D 
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y(2) = ~~~~{IaJl+tlo-~~~(r-2-‘)_ 
a 

2J 4Gn 1 i Y+(z)9 121<1 
n21 -7-n) = Y_(z), lzl>i 

R (2) = r/(2 - e*Oe) (2 - e+**) 

(the integration is performed over the inner edge of u). The function fi (2) is regular 
in the complex 2 -plane with a slit along o where R (0) = 1. 

The representations (3.8) yield the exact solution of the boundary value problem de- 
scribed by the system (2.9). (2, X3). 

4. The unknown coefficients fo, fi, qo, P, fn”, cp,” enter into the right side of 
(3.6). Let us proceed as follows to determine them. We expand the functions X, (z) 
and Y, (z), defined by (3.8) in Taylor series, and taking account of (3.5) we substitute 
these expansions into EC& (3.1). Then equating coefficients of identical powers of z, we 
obtain a system of equations determining the mentioned unknowns. 

It is easy to note that to expand the functions (3.8) in Taylor series it is sufficient to 
obtain the expansion of the functions 

S,(!+= Z\-&& (m=o,*l,...) (4.1) 

into the mentioned series, 
d 

We note that the function B (2) can be represented as a series [Z] 

R(z) = 2 p&)zP* U = cose0 
Pa 

Pn (N = p?S (n> - f2rup7+1 (u) + pn-s f@, Pe r= 1, Pr = --EL 

where P,, (u) is the Legendre polynomial. 
Taking into account that for 1 21 < 1 

1 
-= 

z: 
akz-k-1 

T-2 
ka 

we convert (4.1) into the form 

S,(z) = r: Gnnz”c &a, = 
Go 

if.&-k(u)&\ %dT 

(I 

Using the Mehler-Dirichlet formula for Legendre polynomials [4] 

we fiid 

Ps(U) = f \ dcpe-,Q 
_& R @“I 

(4.2) 

As is shown in @J, for m =/= n the last sum can be converted into 
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4nnw= f;;;"=-r;- m44w+- P*(u)Pn-I(U)1 

where (n # 0). 

(4.4) 

Performing the above-mentioned substitution into (3. I), we obtain the following sys- 
tern of equations (summation is over k > 1): 

hf,O = 9, + (a& - hp + qo)(tln - h) - Wk (tJt?l - kn) 4.5) 

AqJK = CO, + (h/J + hf,+ Ylfl -q&n-t &I) - =ak (hn+hJ 

A02 = D 

l’ed* - %(ho - t-101 - (ho - f-10) 

%(I- hl + t-11) 1 - t11+ t-11 

xtoo (h + Tl)(hO + t-10) - (ho + t-10) 

0 r1- (1L + Tl)(hl +t-11) - 1 + t11+ t-11 

n>2 
(4.6) 

A 0= 

h (ho - t-10) 
h Qll - t-11) 
h (ho + t-101 

- h @ll + t-111 

fo 
+ $0 - 2 $l)lr ttkO - t-ko) 

z= f1 D= 
%I - &hr.,(tkl - t-.kd 

rlo ’ 

“P 
2 ok (tk0 + t-kd 

01 - z) ok (hl + t-kd 

The coefficients I/J,, 0, are expressed linearly in terms of the external load and the 
coefficients fno, cpno (see (2.6)), hence the relationships (4.5) are two coupled infinite 
systems of linear algebraic equations for fno and (p,,’ (h,l and hn2 are expressed in 

terms of the external load and the coefficients fi, qo, p, and 6,, is the Kronecker 

(4.7) 

R&, = K ;,,, (- rna,O + ib,‘) - S,,, & (- na,,” -I- i&O) 

Rzm = Ki,,, (- am0 + imb,‘) - 6,, & (- a,,” -I- inb,‘) 

R:; = KAm (- m~,o + i&o) - 6, & (- nc,’ + id,o) 

6, We investigate the properties of the operator generated by the matrix 1 R% Il(?& 
JR> 2). Let us first estimate the quantity tmn. We have 

t,, = m [Pn-~rmn - P,rn+, n-Iir rmn = p,, - p?I 
I?2 --n (5.1) 

Using the representation (4.2) for the Legendre polynomials, we find 
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t 
7 mn=-~ 

from which 

Here and below C denotes different constants whose exact values are not important. 
Taking into account the estimate for Legendre polynomials [4] 1 p, (u) ] <C ] fi 

and also (5.2), we find 
I &In I < Cm / I/n 

The relationships obtained when using the formulas for a,“, . . ., d,,’ (see (1.7) and 
(2.1)) result in the estimate 

1 Rzff, 1 \< 1379~~ / vii + Cna JGLPS,, x = max (8, s-l) (5.3) 

It can also be verified that the free members of the system of equations are 

h,l, hn2 + 0, n-too (5.4) 
It follows from the above that in a space of bounded sequences x = (zr, . . ., &a, 

- . .) with the norm 1 x 1 = sup,, 1 z,, 1 the system of equations (4.7) can be considered 
as an equation of the second hind with a bounded operator R (we recall that x < 1) 

x+Rx=h, ]R[\<Csup mSxm + n2 I/Kx” 
I 

(5.5) 

It is clear that 1 R 1 < 1 for sufficiently small x and then (5.5) is uniquely solvable, 
by, say, iterations. However, even for any x < i the estimates (5.3) and (5.4) permit 
the infinite system (5.5) to be referred to the class of quasi-regular systems [S] whose 
solution reduces to a successive solution of an infinite system with a small operator and a 
finite N X N system, Here N is determined from the condition 

c A *>s 
- 2 m%” +Cn2Jf~xn<l for n>N 

The unique solvability of this finite system follows directly from the uniqueness of the 
solution. 

We substitute the coefficients f,.,O, O (P,, found from the system (4.5), into the system 
(4.6). Since these coefficients are expressed in terms of the constants fi, pV qo, then 
we obtain a system of 4 X 4 equations determining all the coefficients needed. 

6. Let us turn to extracting the singularities (1.9) in the series (1.3) for the stresses 
on the circle r = c. 

We substitute f,,, qn from (2.2) into these series and use (4.7). To extract the singu- 
larity it is hence sufficient to limit to terms of the order of 0 (n-‘/3 ag n --t 00. 

Let rc > 8 > 0,. We have 

(6.1) 

(Qml'fm“ f Qml’qmo) - 2 2 n COS ne $ (hn - @f-d + 
n22 

2 2 ncosn6 2 (t,--t rn&+..- 
n>9 m>1 
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Ge(c,e) =- 2n22 n4n ne z ernn + t-mn) (Qm21fnlo + Qm22(Pmo) - 
, ma2 

2+ Z~sinWln+bJ+2~ nsinnO2 (tmn+t_,,)r,+... 

Here 
e2 n,2 m>,1 

Ig=l_y :J~;;:~~ 1y=l~r: iJi$I 

A = %h+ qo - h.b B = hp + h + Qfl -Yo 

Here and below, a series of dots will indicate uniformly convergent series which yield 
no contribution to the stress singularity, 

Table 1 

se, deg 
I 

10 30 60 90 

CA 028 -0% CL% -0% o.& -0234 0.24 -O%Kl 

E 
0.438 --o”.O3; ;.;;; -0.198 0.698 -0.459 0.403 -0.537 

014 
0.479 
0.565 -Ok46 I:263 

-0.243 0.7% -O.575 0.318 -0.613 
-0.396 0.672 -0.753 0.171 -0.712 

Let us introduce a series expansion for the generating function of the Legendre poly- 
nomials. Setting z = eie and considering n > 8 > 0,, we find 

ie-ol12 

v2 (u - cm 0) 
- z Pk (u) eike, u = cos eO 

,Qo 

(6.2) 

Taking account of (4.3) for t,, and the expansion (6.2), we obtain 

2 ncosn&,, = - 
V2 (u : cos e) 

Fsin+ [P,(u) + pm-1 Wl + *** 
n>2 

z 
n sin A%,,, = 

)/2(u160sO) 
$ cos $- [P, (u) - p,-, @)I + . * * 

n>2 

Then for n > 8 > 8, there follows from the representation (6.1) 

0, (c, e) + hre (6 e) = 
lr2(cos~rJ--cos6) T1sin [ 

-&+iT,cosG +... 1 (6.3) 
TI = 2 2 (Qmllf,o -k 

ma2 

Qrnls~,o) m (p, + I-)~-~) + 2 + (I+ coseo)-- 

2 2 t,m (Pm + Pm-d 
rn>l 

T2 = - 2 2 (Qm21fmo + Qm22qm0) m (Pm - Pm-l) + 
m>z 

2$1- cos e,) + 2 2 z,m (P, - P,_~) 
ml>1 

Formulas (6.3) permit evaluation of the stress intensity coefficients [6]. In the case when 
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a uniform presure po* acts on the external contour and a = i/s , these coefficients are 

KI + iRrl: = 6 po+ [G, (%, e) + iG2 (00, 811 
The values of G, (O,, E) and G, (Cl,, e) am presented in Table 1. 
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The equations of motion of mechanicaf systems with multipliers are reduced 
to the form enabI.ing the separation of these equations into two groups, the first 
group describing the motions of the system, and the second graup defining the 
multipliers. Each multiplier is determined independently of the remaining 
multipliers, and this makes it easy to assess the dynamic effect of each con- 
straint on the system, On the basis of this approach, we study the following 
problems: determination of the constraint reactions El], study of the motion 
of controlled systems with prescribed constraints [Z, 31 and utilization of the 
method of nonholonomic mechanical systems in the case when the first integ- 
rals exist 141. 

1, Equation8 of motton of a ryetern with multiplior~, Weconsider 
a system the position of which is defined in terms of the generalized coordinates qi (I = 
1, 2, . . .) n). We assume that the system is restricted by ideal, nonholonomic, second 
order nonlinear constraints of the form 

t,(t,q~,qi,q,“)=O, i=i, 2 ,..,, n; a=& 2 ,..., Q (1.1) 


